Category Archives: standards

AP Physics 1 Unofficial Pilot

This past school year, my colleagues and I restructured our Honors Physics course to unofficially pilot the AP Physics 1 course. This was motivated by several factors. We wanted to get a jump on the new AP Physics 1 course so that this summer we would only have to revise the course since we also have to create the new AP Physics 2 course. We wanted to create a pipeline of students prepared for the AP Physics 2 course. We also were dissatisfied with the current structure and emphasis of our existing Honors Physics course.

We’ve structured our course around Standards-Based Assessment and Reporting (a.k.a. Standards Based Grading) for many years, and we continued to do so this year. We did make some changes to the specifics. We transitioned from a binary mastery / developing mastery system to a 1-5 scoring system. All of the details are captured in my syllabus.

A vast majority of the units follow Modeling Instruction and leverage a combination of the official Modeling Instruction materials and derived versions. A notable exception is the electric circuits unit for which we leveraged a combination of Physics by Inquiry materials and the Modeling Instruction CASTLE materials. The current model is based on the Physics by Inquiry investigations and the electric pressure (voltage) model is based on the Modeling Instruction CASTLE materials.

Below are our AP Physics 1 standards for the 2013-2014 school year. Standards that we felt were more significant were weighted twice as much and are designated by the “B” suffix as opposed to the “A” suffix. We will certainly revise these somewhat for next year after reviewing the College Board materials, attending AP workshops, and integrating our new textbook.

Overall, I am extremely pleased with how the AP Physics 1 pilot class was and what our students learned. The incorporation of Modeling Instruction; focus on in-depth, guided inquiry-based experiments; peer instruction-style discussion and debate of conceptual questions; and a great team of teachers with which to collaborate were the keys for the successful year.

Reflections on A Framework for Science Education

I just finished reading the National Research Council’s preliminary public draft of A Framework for Science Education. Since there has been some confusion, I’ll mention that this document is a framework for science and engineering education and not a collection of standards. Standards and curricula will likely be developed in the context of this framework.

As an engineer, I found it refreshing that the framework focuses on both science and engineering and the connections and similarities between them. Given the amount of time I spent as an engineer reading and writing technical documents (and the time I just spent reading this document), I was pleased that one of the practices was reading and analyzing technical documents. As someone interested in the history of science and engineering, the framework confirmed my experience that sharing the historical perspective increases students’ interest in science and engineering.

I don’t know if there was an explicit effort by the framework’s authors to incorporate the principles of the Modeling Methodology, but, regardless, the framework’s practices are closely aligned with it. Both model building and questioning are practices enumerated in the framework. I hope to better incorporate both of these aspects of modeling into my classroom this year.

In the prototype learning progressions, some specific concepts are enumerated. I was surprised by some of the concepts included. The emphasis on waves as a core idea was intriguing since, in my limited experience, sound and electromagnetic waves are not always part of a typical physics curriculum. For example, the prototype learning progressions included the concepts of modulation of electromagnetic waves and diffraction.

Overall, the framework’s architecture of core ideas, cross-cutting elements, and practices and its philosophy of depth versus breadth reinforces the direction that I believe my team is heading in physics. Of course, we’ll have to see how this framework influences the standards and curriculum developed within it.