Tag Archives: technology

Mindstorms

I put Mindstorms: Children, Computers, and Powerful Ideas by Seymour Papert on my reading list when I started teaching AP Computer Science. Being unfamiliar with how best to teach high school students computer science, I figured I needed all the help I could get and heard that Mindstorms was the seminal text on how kids learn computing. If I had better understood what Mindstorms was about, I would have read it six years ago when I started teaching.

Mindstorms isn’t just about teaching kids about computer science. I was surprised at how frequently learning physics was a topic. Papert shared insights on everything from of what does “learning physics” consist (hint: it is not plugging numbers in equations) to how to support learners’ conceptual intuitions rather than attack their “misconceptions.” I was reminded of everything from Modeling Instruction to computational thinking using VPython as I read those sections.

I was also surprised at how useful Mindstorms was as a guide, and a cautionary tale, of the role that technology should play in education. I would recommend it to every teacher interested in leveraging technology to improve learning, every technology integrator, and every administrator who may otherwise approve a purchase order for an interactive whiteboard. It clearly presents how the focus needs to be on the student, on her learning, and not on the technology. A reminder that echnology enables us to do better things not do things better.

Mindstorms was written at the advent of the personal computer revolution. Papert was advocating for a revolution in education. While Logo continues to appear in classrooms (my nine-year-old used Logo some in Math class this year), unfortunately, the ideals of Mindstorms haven’t been realized and, with few exceptions, technology hasn’t been used to change the culture of education. It is sad to reflect on this history and the opportunity that has been lost. I feel that now thirty-three years later, we are at the advent of another technological revolution. Instead of a personal computer in every home, we have a personal computer in every pocket. However, how we will choose to leverage this technology in the educational sphere remains to be seen. With the proliferation and prominence of MOOCs, flipping, gamification, and Khan Academy, I worry that we will once again fail to seize this opportunity. There are beacons of hope: hackerspaces, FIRST Lego League, and The Big Ideas School. Personally, I’m reinvigorated to revolutionize my small sphere of influence through FIRST Robotics, Physics Club, and improving physics instruction.

(I had a slow start reading this book. If you encounter the same, I would recommend skipping the two forewords and the two introductions. In addition, the paperback that I purchased was visually awful. It looked like a printout of a poor scan. If you can find an older copy, your eyes will thank you.)

STEM Talk at NI

Yesterday, I had the honor of presenting my experiences this past summer working on the Fermilab Holometer as well as my perspectives on STEM education at the high school level at National Instruments. Since my contribution to the Holometer project used National Instruments products and my family was vacationing in Austin, Texas, I offered to visit and share my experiences. I was a bit surprised when I was also asked to share my perspectives on STEM education in high school.

My presentation about the Holometer was pretty much the same as the one I gave the Global Physics Department. (I’ve written several posts about the Holometer.) I added more technical details on the NI products involved and how the signal analysis was performed to better match the audience.

At first, I didn’t feel qualified to address National Instruments employees, who work for a company that are amazing supporters of STEM in K-12 with their efforts with FIRST and LEGO. As a result, I started my presentation with disclaimers:

  • I do not have a master’s degree in STEM education
  • I am not a STEM education expert
  • I have not attended conferences and workshops in STEM education
  • I have taught at a one high school for five years

However, once I sat down and started thinking about what I would share, I realized that I, like most physics teachers, am qualified to at least share my perspective because:

every morning I get up and try to inspire students in science, technology, engineering, and mathematics by leveraging my experience as an engineer, an interviewer, a supervisor, and a teacher.

In my case, I specifically left National Instruments and software development to become a physics teacher to make some small contribution by inspiring students to pursue studies and careers in STEM-related fields.

I structured my presentation around three high-level themes which I elaborated with photos, videos, and stories:

Inspire Students with Experiences

I shared that few students are inspired because of something they only read or hear or see; they are inspired by their experience doing it. I shared the experiences of my FIRST Robotics Team, Science Olympiad Team, and Physics Club. Physics Club is an after school, student-driven, low-commitment group that allows all students opportunities to play, inquire, create, share, and explore. I shared our past experiences with near-space ballooning and the ping pong ball cannon. The second theme is:

Inspire Younger Students with Older Students

The main ideas for this theme are that students respond best to other students and students can loose interest in science during middle school. To address this, Physics Club and the FIRST Robotics Team perform outreach activities where younger students see projects done by the older students and build their own smaller-scale projects with the assistance of older students. The third theme is:

Inspire the other 98% in the Classroom

I was somewhat disappointed when I realized that all my efforts with FIRST Robotics, Science Olympiad, and Physics Club only involve 2% of the students at my school. I shared that this is a significant challenge but the most important theme. Many changes to a traditional classroom are required to inspire students about STEM:

  • Change Perceptions
  • Change Mindset
  • Change Pedagogy
  • Change Culture

I shared the importance of bring professionals into the classroom to share their experience and helping students appreciate that science is an active process done by real people. Despite significant local press about standards-based assessment and reporting, I shared how critical it is in my classrooms. I talked about Modeling Instruction, guided inquiry, project-based learning, and Project Lead the Way.

At the end, I felt compelled to take advantage of this opportunity to encourage those in attendance to help inspire students about STEM. I charged them to:

  • Be Aware
  • Promote Reform
  • Provide Support

I was honestly surprised at the level of interest in my presentation based on the attendance and the number of positive comments afterward. So, for those of you like me who are career changers, if the opportunity presents itself, share your experiences as a teacher with your former colleagues. We may gain more allies in the challenges that we face everyday.

The Danger of Misapplying Powerful Tools

When I was a software engineer, I frequently used powerful tools such as C++ and techniques such as object-oriented analysis and design to implement software that performed complex operations in an efficient and effective manner. I also spent a lot of time sharing these with others. However, I learned to provide a caveat: if misapplied, these tools and techniques can result in a much more significant problem than would result when applying less powerful ones. That is, if you are not skilled in the deployment of these tools and techniques, the risk is much larger than the benefit.

Other engineers didn’t always appreciate this caveat. So, I would try to communicate with an analogy. You can build a desk with a saw, hammer, screwdriver, and drill. You can build a desk more efficiently using a table saw, drill press, and nail gun. If you make a mistake with the hammer, you may loose a fingernail. If you make a mistake with the table saw, you may loose a finger. If you are not adept at deploying the tools and techniques, maybe you should stick with the hand tools until you are.

In reality, the risk of misapplying these tools and techniques is more significant than the impact on the immediate project. The broader risk is that others who observe the troubled project associate the failure with the tools and techniques instead of the application of those tools and techniques. People get the impression, and share their impression, that “C++ and object-oriented analysis and design is a load of crap. Did you see what happened to project X?” Rarely do people, especially people not skilled with these tools and techniques, have the impression that the problem is the application of the tools and techniques rather than the tools and techniques themselves. This, in fact, is a much more serious risk that threatens future applications of the tools and techniques in a proficient manner due to their now tarnished reputation.

A series of articles and posts recently reminded me of my experience writing software and this analogy. I feel compelled to start with a disclaimer since this post has the potential to come across as arrogant, which is certainly not my intention. I have not performed any longitudinal studies that support my conclusions. My conclusions are based on few observations and my gut instinct. I tend to trust my gut instinct since it has served me well in the past. So, if you find this post arrogant, before you write me off, see if these ideas resonate with your experience.

SBAR

Let’s start with Standards-Based Reporting and Assessment (SBAR) (a.k.a., Standards-Based Grading (SBG)). Last year, my school started adapting SBAR school-wide. SBAR is a powerful methodology that requires proficient deployment. It is not easy to adapt and effectively apply SBAR to a classroom in an effective way that resonates with parents, students, teachers, and administrators. Proper deployment requires a fundamental change in the teacher’s and students’ philosophy of learning. While the effect of a failed deployment on the individual classes is unfortunate, the larger problem is that teachers and parents attribute the problems to SBAR and not its application. It takes much less effort to convince a parent confused about SBAR of its value than it does to convince a parent livid about SBAR due to a poor experience in another class. At my school, one early SBAR adopter stopped referencing SBAR or SBG at all in his class to distance his methodology from the problematic applications. Fortunately, my school has pulled back a bit this year. This is the risk of mandating application of a powerful tool by those not proficient in its deployment. This is not a unique experience.

Two years ago, another teacher and I decided to try to apply SBAR to our Honors Physics class. We mitigated the risk by limiting deployment to six sections of a single class taught just by the two of us. We sent letters to parents, talked to parent groups, discussed the system with students during class. Only after gaining a year of experience, did we attempt to adapt SBAR to our General Physics class which contained ten sections and was taught by four different teachers. The risk of trying to deploy SBAR on this scale initially was too great given our proficiency.

Technology

Someone recently shared this New York Times article that questions the value of technology in the classroom. In general, a given piece of technology on its own isn’t effective or not effective. Whether technology is effective or not depends as much on its application as the technology itself. It depends on the teacher and the students and the class. Personally, I’ll stick with my $2 interactive whiteboards. This isn’t because SMART Boards are inherently ineffective. It is because they aren’t effective for me and my students given my classroom and my expertise. I expect there are teachers out there who use SMART Boards quite effectively. They are probably sick of hearing how they are a complete waste of money.

I hope to have a class set of iPads at some point this year. My school isn’t going to buy iPads for every student. Instead, we’ll put iPad in the hands of 25 General Physics students in my classroom and see what we can do together. Start small, reflect, adjust, expand.

Modeling

I participated in a Modeling Instruction Physics workshop in the summer of 2008. I didn’t dare to really start modeling in my classroom until last fall. Why? I believed that the potential risk to my students due to a misapplication of the modeling methodology was tremendous. I decided that it was better for my students to learn what they could via more traditional instruction than what I foresaw as a potential disaster if I misapplied the deployment of modeling. Even more importantly, I was concerned that I could put Modeling Instruction at risk of never being adopted if my failed deployment was interpreted as a failure of Modeling Instruction itself. Only after more research, practice of Modeling Instruction techniques, and discussions with others, did I feel comfortable deploying Modeling in my class last fall. In an attempt to shield modeling from my potential deployment failures, this is the first year that I’ve associated the label “Modeling Instruction” to my class.

I used to be surprised at how adamantly some Modelers warned teachers not to do Modeling Instruction unless they had taken a workshop. I now believe they are worried about the same potential risk that I am. Modeling Instruction is a collection of powerful tools and techniques. Done well, by a skilled practitioner, Modeling Instruction can be incredibly effective. Applied ineffectively, Modeling Instruction can be a disaster and tarnish its reputation. I think students are better served by traditional instruction than by Modeling Instruction applied ineffectively. Traditional instruction may result in a lost fingernail. Ineffective modeling instruction may result in a lost finger. There, I said it. Disagree in the comments. Just don’t take that quote out of context.

While not directly related to modeling, I believe this recent article supports my conclusions. The problem isn’t that hands-on labs are ineffective, it is that ineffective deployment of hands-on labs is ineffective.

Conclusion

I don’t want my thoughts that I’ve shared here to paralyze you into inaction. Rather, I hope that I’ve encouraged you to make sure that you have sufficient expertise so you can apply your powerful tools and techniques in an effective manner. Your students will benefit and the reputation of these powerful tools and techniques will benefit as well.

How do you do this?

  • Attend professional development opportunities (e.g., Modeling Instruction Workshops) that increase your skill with these powerful tools and techniques.
  • Apply these powerful tools and techniques in a limited manner as you gain experience and expertise.
  • Participate on Twitter, start a blog, read a bunch of blogs, participate in online discussions (e.g., Global Physics Department), and subscribe to email lists to accelerate your knowledge of these powerful tools and techniques.
  • Observe skilled practitioners of these tools and techniques, find a coach to observe you, welcome feedback from everyone.

Physics Club and the Row-Bot Challenge

Three years ago my instructional coordinator encouraged myself and another physics teacher to start an after school club for students to “do cool physics stuff.” That first year, we focused on building small projects related to physics. We built candle-powered steam engines, homopolar motors, LED throwies, vibrobots, and styrofoam plate speakers. Two years ago, we started with the small projects, but then the students were inspired to launch a near-space balloon. Once the students set their minds to lauching their own near-space balloon, the club transitioned from a primarily teacher-led organization to a student-led one.

Last year, we started with a ping pong ball launcher challenge. After this kickoff, students decided to build a large hovercraft in the fall and then take it on tour to share with the community and excite people, especially younger students, about STEM. In the spring, we launched our second near-space balloon.

While Physics Club has increased in popularity and size in the past three years, we were amazed when over fifty students stayed after school on Friday to join Physics Club. We’re still figuring out how to keep this many students engaged and what our big project will be for the fall. To keep everyone active while we figure this out, we introduced the 2011 Physics Club Row-Bot Challenge:

The club will document this project on its web site. I’ll let you know how it goes.

Why the Row-bot Challenge? Well, we are considering building some sort of remote-controlled craft that can film video hundreds of feet underwater. This challenge may be a good precursor for that.

In addition to kicking off the challenge, the students had a great time filming with the high-speed camera. They are still trimming the footage and preparing the website, but here’s one of my favorites:

We also borrowed a thermal imaging camera that is normally used to diagnose computer hardware issues. While we don’t let the students use this camera, we still found some interesting things to image. One of my favorite was this comparison of an incandescent, CFL, and LED light bulb:

thermal images of light bulbs

While not planned, we also debunked those ghost TV shows. One student noticed that the camera was picking up what appeared to be a thermal ghost inside the adjacent room. This was puzzling until another student realized that the “ghost” was simply my infrared reflection off the glass door in the adjacent room. Science for the win!

From Digital Junk Drawer to Online Exploration for Students

I’m not sure how many people will be interested in this post describing the tools and process I use to transform the bits in my digital junk drawer into online explorations for my students. However, I notice more and more educators using Macs, and, for those who don’t, they may be able to generalize these ideas using their own tools.

I create a topic page in Schoology for every unit:

Topic page

This topic page contains a bunch of links at least somewhat related to the unit. Each topic page has categories for simulations, articles, videos, and projects to make. This topic page is from the first unit which is somewhat less focused than the others and, therefore, has subcategories as well. While some of this material will be referenced in class, most of it is just for students to explore and enjoy. When I introduce topic pages, I tell students that when they are procrastinating, they should click on these links rather than randomly browse the web.

Creating these topic pages takes very little effort because of the tools that I use.

Every time I encounter something that may be somewhat related to physics, or at least science, or maybe just education, I drop it in my digital junk drawer which is Yojimbo. To be more precise, I tag it as I drop it in Yojimbo. This is as simple as a clicking a button or hitting a keystroke in Safari or NetNewsWire and typing the tags. My tags are organized around the units that I teach, the main concepts that are covered, and the types of activities I perform as an educator. I keep a list of my tags in a text document that I can reference if I can’t remember which ones to use. My Yojimbo window looks like this:

Yojimbo

Yes, I have over 4000 items in Yojimbo and most of them are related to education. Most of the time, I just keep tagging and adding items to Yojimbo. When we’re ready to start a new unit and its time to create or update the topic page, I use Yojimbo’s collections to organize the links that I want to feature:

Collections

It is easy to filter by tags in Yojimbo and sort by date. I review the new items that I’ve added since I last updated the topic page and drag them into these temporary collections corresponding to the topic page categories (the lessons/labs are for items that I want to incorporate into class rather than the topic page). Once I’ve reviewed all of the new items, I highlight all of the items in a category and use FastScripts to run an AppleScript that generates HTML for all the items:


tell application "Yojimbo"
    set urlList to "<ul>
"
    set selectedItems to the selection
    repeat with bookmarkItem in selectedItems
        if the class of bookmarkItem is bookmark item then
            set urlList to urlList & "  <li><a href=\"" & (location of bookmarkItem) & "\">" & (name of bookmarkItem) & "</a></li>
"
        end if
    end repeat

set urlList to urlList &amp; "&lt;/ul&gt;"
set the clipboard to urlList

end tell

The script copies the HTML to the clipboard so all I have to do is paste it into the page editor in Schoology.

While I’ve focused on using Yojimbo to make it easy to create these topic pages, this is just one example. When I or another teacher vaguely remembers something, I can usually find it in Yojimbo in a matter of seconds. While I love 1Password, Yojimbo keeps an encrypted record of all my passwords and serial numbers. I also encrypt weekly backups of my web-based grade book since I certainly don’t trust its security. Yojimbo can handle more than just bookmarks, I give it images, PDFs, and text notes referencing journal articles or books which aren’t available online.

And yes, if you are familiar with Now, Discover Your Strengths and are wondering, Input is one of mine.

Nuclear Physics Project Reflections

I have a few notes to share about the outcome of the Nuclear Physics Project.

If you are interested in seeing the final projects, the entire nnhsphysics wiki is available. If you don’t want to read every page, I created an index that highlights several project pages that cover a variety of topics in a variety of ways.

In terms of the quality of the projects, many students were very creative with their presentation methods. I strongly encouraged and pushed students to find creative ways to present their projects. I should have spent more effort encouraging students to have strong science, technology, and society-related content. In general, the content wasn’t as thorough, complete, and as accurate as I had hoped.

Overall, I think students learned a great deal about the history of nuclear weapons and nuclear power. I forget that events that I lived through (Three Mile Island, Chernobyl) are consigned to the last pages in my students’ U.S. History text that they never get to read.

In terms of technology, I was very impressed with Wikispaces. Wikispaces is ideal for classroom projects. I was able to easily create accounts for nearly 150 students very easily even though students don’t have school e-mail addresses. It is trivial to search by student name to see their recent edits to their pages and comments that they have made. The permissions model is sufficiently flexible to allow everyone to view content, yet only members to edit and comment on it.

I was also impressed with Scribd. It was very reliable and makes it easy to embed documents in Wikispaces. I found the ability to embed the document, either as individual pages to scroll through or as a slideshow, particularly useful.

A couple technologies were disappointing. TeacherTube was unreliable in terms of being accessible and successfully uploading videos. The 24-or-more-hour delay for approval, while understandable, was frustrating at times. The only reason I used it at all was that it wasn’t blocked by my school’s web filters.

Speaking of web filters, it goes without saying that they made these projects more cumbersome and frustrating than I would have liked. That said, the technology staff at my school was great about unblocking sites that were obstacles to students working on their projects.

Also disappointing was the wireless performance in my classroom. All students were able to connect via wireless but would frequently have difficulties logging into Wikispaces or posting comments on Wikispaces. They were particularly frustrated when they would compose a thoughtful comment only to lose it when the submission timed out. Reflecting back on this experience, I wonder if this was due to some sort of latency issue and Internet Explorer’s relatively short timeouts. I may try using Firefox to see if that mitigates the issue.

Overall, I would definitely try something similar to this again. Next time, I would like to plan a bit more ahead and have more time for the project so I could involve educators and students from other schools. If you have any tips for me for next time, please share!

Nuclear Physics Project

This year, after completing our four major units of second semester in regular physics, we planned on a project that would address Illinois Science Goal 13: “Understand the relationships among science, technology and society in historical and contemporary contexts.” This project has the potential to move beyond content and integrate perspectives from many other disciplines. I had some ideas in mind, but after the Fukushima disaster, my colleague and I decided that our final project would focus on nuclear physics. Here is the description of the project that we will distribute to students:

Download (PDF, 51KB)

One aspect of this project that I’m really excited about is that we will be publishing all of the projects on Wikispaces so that they can be viewed by other students and professional both within and outside of our school.

I’m also very excited about the manner in which students will present their projects online. In order to highlight how technology influences the communication of scientific ideas and events throughout our society and how that has changed throughout history, we’ve encouraged students to create a juxtaposition between the time period of the topic and the presentation method that they select. For example, if their topic is historical, choose a presentation method that is modern (e.g., Marie Curie and her Facebook status updates). Or, if their topic is modern, choose a presentation method that is historical (e.g., black-and-white news documentary of fusion reactor).

I’m very interested in your feedback or involvement. Do you know of other topics related to nuclear physics that we should add to our potential topics list? Do you have ideas for other engaging presentation methods? Are you or your students interested in viewing and commenting on these projects in late May? If so, please contact me either via Twitter (@gcschmit) or via e-mail (geoff at this domain). Regardless, when the projects are published, I’ll post the link here.

Update: 20/6/11 11:09 PM

All of the student projects are on nnhsphysics wiki hosted by Wikispaces. I created an index of sample projects which contains projects on a variety of topics created in a variety of mediums.