Monthly Archives: June 2012

Preparing for New AP Physics B Course

I will spend a lot of time this summer preparing for a new AP Physics B course. For most of the past five years, I’ve taught an Advanced Physics course which was a third semester of physics after Honors Physics that covered fluid dynamics, thermodynamics, and modern physics topics. This class wasn’t officially an AP Physics B class, but many students took the AP exam and were well prepared.

However, this new course replaces Advanced Physics, will be a two-semester course, and is open to students who have completed either Physics or Honors Physics. So, the students will have covered different topics and approached physics from different perspectives. For example, the Honors Physics class covers a superset of topics but the Physics class emphasizes the development and understanding of Models. Due to this diversity, and now being an official AP course, I’m taking the opportunity to develop new class materials and try a few new approaches.

Topic Sequence
===
We will briefly review or cover all AP Physics B topics in this course. Topics that are review will be used as opportunities to perform more sophisticated labs and explore new representations such as computational models. In addition, there are certain topics that I believe should be part of a college physics class and that are of great interest to students but are not part of the AP Physics B curriculum. We will cover those as well.

Fall Semester

* Special Relativity
* Kinematics
* Statics and Dynamics
* Fluid Mechanics
* Work, Energy, Power
* Thermodynamics
* Linear Momentum
* Oscillations and Gravity
* Waves
* Capstone Project

Spring Semester

* Electrostatics
* Electric Circuits
* Magnetic Fields
* Electromagnetism
* Geometric Optics
* Physical Optics
* Particle Physics
* Atomic Physics and Quantum Effects
* Nuclear Physics
* Cosmology

Components of Each Unit
===
I’m going to try a few new ideas in most units. Some of these are driven by methodologies that I have wanted to try for a while (e.g., computational modeling and peer instruction). Others are driven by new technologies available to my students (e.g., [Canvas](http://canvas.instructure.com/) and iPads).

Topic Summary

I’m currently writing an AP Physics B review guide as an iBook. I wanted a review guide tailored to my students’ experiences and the structure of the class. The review guide is organized by topic but focuses on the models applicable to each topic. In addition to a description of the relevant models, the graphical, mathematical, and diagrammatic representation of those models are included as appropriate. I want students to explore an additional representation of the models to reinforce their understanding and have been very impressed with John Burk’s [use of computational modeling](https://quantumprogress.wordpress.com/computational-modeling/). So, computation models developed using [physutil](https://per.gatech.edu/wiki/doku.php?id=projects:hscomp:physutil) and [VPython](http://www.vpython.org/webdoc/visual/VisualIntro.html) are also included. I hope to include the iBook (also as a PDF) as well as related videos and code snippets in an iTunesU course. I’ve been impressed with iBook Author so far and have exported the first chapter as a PDF.

Download (PDF, 5.87MB)

Labs and Lab Notebooks

Since all students have already had a year of physics, I’m looking forward to doing some more sophisticated labs. Students will be creating electronic lab notebooks as portfolios in our new learning management system, [Canvas](http://canvas.instructure.com/). In addition, since we will have a class set of iPads available, we will be evaluating [Vernier’s](http://www.vernier.com/) new [LabQuest 2](http://www.vernier.com/products/interfaces/labq2/?lq2-home) and the [Connected Science System](http://www.vernier.com/products/interfaces/labq2/connected-science-system/).

Quizzes and Peer Instruction

I have been wanting to explore [peer instruction](http://blog.sciencegeekgirl.com/2012/03/16/ftep-effective-facilitation-of-clickers-workshop/) using clickers and I think the more conceptual questions would be a great fit and prepare students for the multiple choice portion of the AP exam. I found some wonderful existing clicker question at [OSU](http://www.physics.ohio-state.edu/~physedu/clicker/) and [CU Boulder](http://www.colorado.edu/physics/EducationIssues/cts/index.htm). I’m compiling quizzes from existing AP free-response questions and will use the scoring rubrics to provide formative feedback to prepare students for the free response portion of the AP exam.

Exams

[Secure Pretty Good Physics (Secure PGP)](https://secure-pgp.wikispaces.com/) is a great resource for AP Physics teachers. Other teachers have indexed questions by topic which makes creating new exams much easier. I’m compiling an exam and a reassessment exam for each unit based on existing AP multiple choice and free response questions. I plan to post these, along with the quizzes, to Secure PGP when I’m done.

Standards-Based Assessment and Reporting

I’m using a slightly modified version of the SBAR structure that we’ve been using in Honors Physics. The biggest change is that assessments will be scored on a five-point scale, like the AP exam itself. This is a small change for those students familiar with Physics’ four-point scale, but a more significant change for those students familiar with Honors Physics’ mastery system. Another significant change is the granularity of standards. Due to the integrated nature of the AP exam, standards will be very broad, usually one standard for each unit. All of the details of the SBAR structure are enumerated in the class syllabus.

Download (PDF, 62KB)

I hope some of you who are also teaching AP Physics B find something here of use. I know that the work that other teachers have done is incredibly helpful as I prepare for this new course. I plan to share pretty much everything I compile either here or on Secure PGP; so, please stay tuned or ask if I forget to post something.