Monthly Archives: May 2011

Holography

There is a long tradition at my school of students creating holograms as a final activity in physics. Everyone gets to make their own and keep it. I have heard several alumni mention that they still have their hologram. Just this week, an alumni who is also a dean remarked that he still has his hologram from 20 years ago. Sometimes the purpose of an activity is learning; sometimes, just to inspire. This is the later.

I’m not sure how we first made holograms, but at some point in the distant past, now retired teachers must have attended a holography workshop led by Dr. Jeong from Lake Forest College. A couple of summers ago, I attended a Chicago Section AAPT meeting and was surprised to learn that Dr. Jeong was leading the workshop!

For years we have been making [reflection holograms](http://www.integraf.com/a-simple_holography.htm). These usually turn out well. The disadvantage is that there isn’t much depth and, therefore, the 3-D effect isn’t as dramatic. The advantage is that reflection holograms are easily visible in white light (sun light is especially effective).

Last year, after attending Dr. Jeong’s workshop, we decided to try and also make [transmission holograms](http://www.integraf.com/a-make_transmission_hologram.htm). Dr. Jeong actually demonstrated how to make an “omnigram” which is a combination of a reflection hologram and a transmission hologram on a single slide. We tried this, but only the transmission holograms were visible. The transmission holograms were amazing. They have an incredible depth which allows larger objects (or a collection of small objects) to be captured. The disadvantage is that a laser is required to view the hologram (a green laser pointer works better than a red one).

This year, we provided students an option to make either type of hologram. They split about 50-50. As the price of laser pointers continue to fall, we may soon only make transmission holograms.

We order all of our supplies from [Integraf](http://www.integraf.com/). We use the PFG-03M holography slides, the JD-4 processing kit, and the DL-4B laser diode. The setup for transmission holograms is relatively simple. I have detailed photos of the slide holder (on the left) and laser (on the right). The objects are positioned between the slide holder and laser. In the back, is the shutter which blocks the laser light and consists of foam board covered with black felt with a base of two large binder clips.

holography setup

I built the slide holder from a 2.5″ picture frame. The picture frame is painted a flat black. Black backing material is glued to the top of the picture frame to ensure that laser light does not enter the sides of the slide. The picture frame is secured to a base which is a tea tin filled with sand and covered with black felt. The picture frame backing is slid behind the slide in the frame to secure the slide (emulsion side faces the scene).

slide holder

The diode laser is secured by a clothespin in a tea cup filled with sand. It is is positioned on a base which consists of three physics texts covered with black fabric. I added a switch and a two-pin connector to the battery box which results in a more reliable connection and easier operation.

laser

If you are interested in making your own holograms, feel free to contact me and I’ll try to answer any questions that you may have. Dr. Jeong is very approachable and provided several tips based on questions that I posed.

**Update**

I realized that it would be helpful to show some examples of these holograms. It was challenging to photograph them, but here is my best attempt for a transmission hologram:

transmission hologram

And here is a reflection hologram:

reflection hologram

Nuclear Physics Project

This year, after completing our four major units of second semester in regular physics, we planned on a project that would address Illinois Science Goal 13: “Understand the relationships among science, technology and society in historical and contemporary contexts.” This project has the potential to move beyond content and integrate perspectives from many other disciplines. I had some ideas in mind, but after the Fukushima disaster, my colleague and I decided that our final project would focus on nuclear physics. Here is the description of the project that we will distribute to students:

Download (PDF, 51KB)

One aspect of this project that I’m really excited about is that we will be publishing all of the projects on Wikispaces so that they can be viewed by other students and professional both within and outside of our school.

I’m also very excited about the manner in which students will present their projects online. In order to highlight how technology influences the communication of scientific ideas and events throughout our society and how that has changed throughout history, we’ve encouraged students to create a juxtaposition between the time period of the topic and the presentation method that they select. For example, if their topic is historical, choose a presentation method that is modern (e.g., Marie Curie and her Facebook status updates). Or, if their topic is modern, choose a presentation method that is historical (e.g., black-and-white news documentary of fusion reactor).

I’m very interested in your feedback or involvement. Do you know of other topics related to nuclear physics that we should add to our potential topics list? Do you have ideas for other engaging presentation methods? Are you or your students interested in viewing and commenting on these projects in late May? If so, please contact me either via Twitter (@gcschmit) or via e-mail (geoff at this domain). Regardless, when the projects are published, I’ll post the link here.

**Update: 20/6/11 11:09 PM**

All of the student projects are on [nnhsphysics](http://nnhsphysics.wikispaces.com/) wiki hosted by [Wikispaces](http://wikispaces.com/). I created an [index of sample projects](http://nnhsphysics.wikispaces.com/Sample+Projects) which contains projects on a variety of topics created in a variety of mediums.