Student Feedback on SBAR

As we near the end of the first semester, I have been reflecting, both on my own and with my team, on the changes that we made this semester to support our standards-based assessment and reporting (SBAR) philosophy. The adjustments that I expect to make in our honors physics class are minor since we now have three semester of SBAR under our belts. However, this is the first semester of incorporating SBAR into our regular physics classes. While we, as a team, have some [ideas on adjustments to make for second semester](https://pedagoguepadawan.net/31/adjustmentsforsecondsemester/), I wanted to capture feedback from the most important stakeholder of all, our students.

Inspired by [Ms. Bethea’s survey](http://blog.msbethea.com/?p=445) that she administered at the start of the year, I created a survey to capture student feedback on various aspects of class: standards, grades, quizzes and exams, labs, other learning activities, and homework. Most questions permitted the typical strongly-agree to strongly-disagree responses, but a few were open-ended. All of my questions are available [here](https://pedagoguepadawan.net/wp-content/uploads/2010/12/studentClassroomSurvey.pdf). I don’t claim to have completed any sort of statistically significant scientific study, but I found responses interesting.

In the rest of this post I’ll share the responses of several of our students to the prompt “standards-based grading is …” to show their perspective. Some of these comments get me out of bed in the morning inspired; others, keep me up late at night concerned; and some, make me chuckle.

Get Me out of Bed in the Morning Comments
=====

Standards-Based Grading Is…
—–

> a good alternative to the traditional grading system. In many of my other classes that do not use standards based grading, I feel that I do not really understand what I am learning, but rather, I am worried about my grade more than anything. The type of standards based grading utilized in physics ensures that I can focus on acctually learning new material, as I know that if I learn the material, I’ll have a good grade. Addtionally, I like the fact that we don’t keep losing points for simple “silly” mistakes, as this is where I usually lose points on, even though I usually understand the overall concept. This is why I feel that standards based grading is also a more accurate depiction of what people really know.

> a great way to show learning in physics. It makes me think less about a letter grade and more about actually mastering the concepts we cover.

> A great way for people to show what they know. If they did not understand the full idea, they can always go back and learn what they need to know. It also gives the students the knowledge as to what the teacher will be grading them on. It also saves the grade of a student who learns at a slower pace or looks at the curriculum at a different aspect than others.

> fantastic. There’s more focus on what school should be about: comprehension of material retention. It is a wonderful new program; I believe courses should be taught with a much stronger foothold of standardized based grading.

> Very helpful in increasing my grade and helping me further understand the material in class. The clear targets allow me to study specifically what I need to know, and I feel like I will better retain the information that I’ve learned this year.

> A way to break down the material of a class and be assesed on individual topics.

> only being able to move on when you fully understand a concept

> awesome. This is the first year that I’ve had it, and I actually have A’s in both of the classes that I have that use it … . I think that this system really gives students the opportunity to show that they know the material, rather than getting points for doing homework and such.

> more helpful than regular grading for most classes because you are not penalized for small non target-related mistakes.

> good because you get a second chance to prove yourself, and improve, where as normal grading does not allow that.

> A system that can be harsh if you don’t completely understand a concept, but forgiving if you spend the time to learn it and utilize second-tries.

Keep Me up Late at Night Comments
=====

Standards-Based Grading Is…
—–

> a system of grading on a 4,3,2,1 / 3,2,1 system, instead of percentages, apparently that has to be used … because some people can’t handle regular grading.

> detrimental to my grade. Though it places less pressure on me, I don’t feel like my grade in the class accurately reflects my understanding of the material nor the amount of work that I put into it.

> Stressful and unindividual. My grade should be a reflection of my personal effort and growth.

> REALLY ANNOYING, it penalizes you more then anything else because you have less points, and even if you just miss a few questions, you still get a zero for that target which has a huge impact on your overall test score instead of jsut getting a number grade which would be like an 85% or something. I hate SBG. I dont see the point of it what so ever.

Defy Classification Comments
=====

Standards-Based Grading Is…
—–

> Another type of conspiracy, but less severe and possibly more helpful, although, it still will create a schism between those who understand, and those who don’t; however, this sort of grading measures how well someone knows the right answers rather than how well they can repeat it.

> Pretty cool..i guess it could screw you over if you’re not careful…but whatever

What does this all mean? I don’t know yet. We’ll discuss some of the feedback tomorrow in class. I’ll have to reflect on all of this between semesters.

Adjustments for Second Semester

Our team of four physics teachers recently convened to reflect on the first semester of standards-based assessment and reporting in Regular Physics. While two of us have been implementing SBAR in Honors Physics, this Fall Semester was the first for Regular Physics. There are many, many aspects of how we integrated our SBAR philosophy that we found beneficial. However, the primary focus of our meeting was to address those aspects that we felt could be improved.

**Assessing every standard for three consecutive weeks is not an effective use of time for most students.**

Every standard would be assessed on three consecutive quizzes which would take three weeks. The first quiz would assess the standard in a more conceptual and basic manner and the second in a more advanced and comprehensive fashion. In combination, they provided a good measure of a student’s understanding. The third quiz wasn’t necessary for most students since they had already demonstrated that they understood the standard. That precious class time could be used more productively.

We decided that we would eliminate the third in-class quiz and make it an optional outside-of-class quiz. Those students who needed an additional opportunity to demonstrate their understanding may take this third quiz. The third quiz will be advanced and comprehensive since a student’s score on it replaces their score on the first two quizzes. Based on prior experience, we picked a single day every week when these third quizzes will be offered before and after school. At a bare minimum, students are required to submit corrections to the first two quizzes before they earn the opportunity to take the third quiz. Students are encouraged to pursue much more substantial learning activities before taking the third quiz.

**The mapping of 1-4 to traditional percentages was problematic and inflated.**

Our mapping of the 1, 2, 3, 4 indicators, which are used on almost all assessments, to traditional percentages as required by our school’s gradebook had a few issues. Students and parents were concerned that a “4” didn’t map to a 100%. It is really hard to not focus on traditional grades when our grade book only presents traditional grades. At the other end, the traditional percentages assigned to 1s and 2s didn’t reflect that lack of understanding that they should. Personally, I found that some students who were really struggling to understand physics didn’t appreciate this fact because their grade was inflated due to the mapping (“I’m doing fine; I have a C”).

For the Spring Semester, we will map our 1, 2, 3, and 4 indicators to traditional percentages as follows: A 4 corresponds to a 100%; a 3, 85%; a 2, 65%; a 1, 50%.

**Too many standards.**

Despite warnings from the two of us with previous SBAR experience, we still defined too many standards for each unit. Several times, this resulted in too much class time spent assessing multiple targets that could have been effectively assessed in combination.

As we define the standards for our Spring Semester units we are trying to combine standards when possible. However, if standards are too broad, it is hard for students to clearly understand what they are expected to learn. Which leads us to the next aspect in need of improvement.

**Use consistent terminology to more clearly communicate with students, parents, other teachers, and administrators.**

Our school is in the process of creating a glossary of terms with common definitions to address this aspect that is in need of improvement. One especially egregious example concerns the use of the word “target.” Our school has a history of defining “target” as a student-understandable and demonstrable goal for a daily lesson. We have been using “target” as a synonym for standard which is much broader.

In the Spring Semester, we will call our standards “standards” and our daily goals “targets.” This will help, but not address the problem that a high-level standard may be too vague for students to clearly understand what they are expected to know. Next school year, I hope to associated several targets or objectives with each standard to provide a connection between specific learning goals and higher-level standards.

Most of us can’t imagine going back to teaching Regular Physics like we did last year. That alone is a great sign that we heading in the right direction. Thankfully, we were given time to reflect and adjust for the Spring Semester which now looks even more promising.

***Update: Fri Dec 17 00:28:05 CST 2010:***

I’ve scanned the above referenced [glossary of terms](https://pedagoguepadawan.net/wp-content/uploads/2010/12/sbg-glossary.pdf), which is still a draft document.

Electronic Whiteboards

Yesterday, I finally had the opportunity to try something that I have been wanting to do for over a year: electronic whiteboards.

Last year, we were the fortunate recipients an an HP Innovation in Education grant which included a classroom set of tablets (we never had tablets before). I immediately thought of having students prepare traditional Modeling whiteboards on the tablets and project their “whiteboards” on a screen as they present them. I encountered two roadblocks. One, my classroom has a front “lecture” area with individual student desks and a screen and LCD projector and a back “lab” area with lab tables. We prepare and present whiteboards in the lab area and hang the whiteboards from two S-hooks tied to the ceiling. I wanted to continue to prepare and present electronic whiteboards in this lab area which would require obtaining a new projector. We found an extra projector which was installed near the end of last year. The second roadblock was that I didn’t want to incur the overhead of students physically connecting a VGA cable to their group’s tablet in order to present. I wanted to seamlessly be able to switch between laptops. This just recently become a reality as the projector was connected to the network.

Electronic whiteboards were fantastic. Especially considering that we had never attempted them before and the process was new to the students and me. We noted several advantages to electronic whiteboards over traditional whiteboards:

* We’re not as tempted to rush through presentations as we near the end of class. If we don’t get to a whiteboard in one class, we can display it the next day. Today, we quickly picked up where we left off at the end of class yesterday. This is significant since I only have ten whiteboards in my classroom in which eight classes are taught every day. It is not always feasible to save a whiteboard from one day to the next. (Yes, the irony of having a classroom set of tablets but not a whiteboard per group is not lost on me.)
* Whiteboards are exported as PDF files and uploaded to the class website on [Schoology](http://schoology.com/). Students can view whiteboards outside of class if they are absent or if they want to review them again. Students can also comment on whiteboards posted on the website so the conversation can extend beyond the classroom. Students commented on this advantage much more than the others.
* Whiteboards appear to have more detail and yet are easier to read than traditional whiteboards. If more room is required, OneNote (which is the application in which we’re drawing our whiteboards) simply grows the page. This encourages groups not to artificially limit themselves to a 2’x3′ whiteboard. Furthermore, the whiteboard is projected on a large screen. If a group writes too small, they can zoom in and scroll around during the presentation. In addition, none of the lines look like they are drawn with dried out whiteboard markers!

whiteboard.jpg

I’ve only noticed one potential disadvantage. The physical tablet screen is smaller than a physical whiteboard. Groups still huddled around the tablet like they would a whiteboard, but it is not as large an object around which to gather. Also, only one student can write on the tablet at a time while occasionally two students will be writing on the same whiteboard at the same time. So, I’ll have to keep an eye on this and make sure that the group collaboration during whiteboard preparation doesn’t suffer.

We’ll definitely try this again. I expect that it will even go smoother since students are now familiar with the tablets, OneNote, and how to connect wirelessly to the projector. If anyone has tried something similar and can offer some tips, please share!

Halloween Physics

There is a tradition at my school of physics and chemistry classes having a day of science-related demos on Halloween (or the closest school day). We share and discuss a wide variety of demonstrations with the students that relate to topics they have already studied, topics they will be studying, or just cool stuff that, for whatever reason, we won’t study.

One of my favorite demonstrations involves a PVC pipe, a ping pong ball, a soda can, and a vacuum pump. The ping pong ball is inserted into the PVC pipe and both ends of the PVC pipe are sealed with mylar (the shiny material of some helium balloons) and PVC couplings. The vacuum pump then evacuates the PVC pipe. Once evacuated as much as possible, a knife tip breaks the seal at one end of the PVC pipe and the ping pong ball is pushed out the other end at an incredible high speed. Last year, we captured the result with a high-speed video camera (1000 fps):

This demo provides a great shared experience to later relate to almost any area of mechanics. I can use it as an example for the work-energy theorem with my regular physics class, fluids with my advanced physics class, or challenge the AP C class to solve for the force on the ping pong ball given the pressure applied to the hemisphere. Plus, we now have a whole collection of decimated soda cans on display!

Dealing with Unfriendly Gradebooks

Last week was parent-teacher conferences. As I [previously mentioned](https://pedagoguepadawan.net/22/threerealizations/), I expected conferences to be somewhat more challenging due to how grades are reported this year compared to last year. The bad news is that I was right. The good news is that since I anticipated this, I was able to mitigate its effect.

When sharing reports from our gradebook system with parents, I noticed that regardless of what I was saying, if they could see the grade sheet their eyes would start scanning it and their finger would involuntary point to the 0% (F) in a row. At that point, they weren’t listening about learning or mastery or their son or daughter; they were focused on this “zero” which may just mean that the student is still developing mastery of that specific standard.

To maintain focus during the conference, I created paper templates (one for regular; one for honors) to defer visibility of these “grades” until the appropriate point:

lowtech.jpg

This low-tech solution to a high-tech problem was very effective; my conversations with the template were much more productive than those prematurely focused on 0% (F). Since I didn’t always remember to use the template, I ended up with an informal qualitative study of parent reaction.

In addition, for Regular Physics, I displayed a spreadsheet on my computer that focused on the targets and the 1-4 scores on the weekly targets quizzes:

standards.jpg

Parents seemed to readily grasp the 1-4 scale and the target quiz structure when presented in this manner. Parents and I discussed this report first before I ever presented the official grade sheet.

I share these examples because I know that many of us struggle with clearly presenting student learning with our less-than-ideal gradebook systems. For me, I was fairly successful by focusing the conference on student learning with supplemental information and low-tech modifications to standard reports. If you have developed an effective way to deal with your less-than-ideal gradebook system, please share in the comments!

Growing SBAR School-Wide

A year ago, when my colleague and I decided to jump aboard the SBAR express with our honors physics classes, it was a substantial effort but manageable. This year, when my team (four people) decided to integrate SBAR into another physics class, it was more challenging and more frustrating. Now, we are trying to move the entire school to an SBAR philosophy. I expect this will be extremely challenging and extremely frustrating. If there are only two people who share a common philosophy and passion, it isn’t too hard to create an SBAR framework for one class. However, as the number of people increase, the degree of agreement on philosophy and passion for implementing a change of this magnitude decreases exponentially. To be clear, this isn’t a slight on my colleagues in any way, but rather a reflection of the diverse philosophies and passions that we have.

The purpose of this post is two-fold. Primarily, I’m asking for your advice and experience if you have tried to grow a SBAR philosophy to encompass an entire department or, ideally, school. Secondly, in the process of writing it, I will refine a couple of ideas that have been idling in my brain.

So, for those of you who have tried to grow your own SBAR reform to an entire department or an entire school: How general are the guidelines? How do you balance the consistency desired by students and parents and the unique structure and characteristics of very diverse subject areas? How do you provide teachers who thrive on autonomy, flexibility, while providing teachers who desire it, structure? Have you agreed upon a one grading scale to rule them all? I appreciate that many educators are pursuing even more progressive ideas than my implementation of SBAR. However, I would rather my school take a step in a positive direction rather than fall flat trying to take too large a step.

One immediate challenge focuses on grading scales. When faced with a several different SBAR implementations, each with different methods of scores and calculating grades, parents and students are confused and frustrated. This is completely understandable. However, to be fair, while in a traditional grading system each class may appear to be the same since it consists of a percentage converted to a letter grade, each teacher may derive that percentage in a completely different manner. That is, it is an illusion of consistency since it is superficial.

Consistency is important. For example, if everyone uses a 1-4 grading scale, each number should represent the same idea. I think this is achievable; most teachers could probably agree to something along the lines of:

* 4: Clear demonstration of understanding (with minor mistakes being allowed).
* 3: Significant understanding is demonstrated, but a key aspect of the solution is not.
* 2: Partial understanding is demonstrated (you are in the right ballpark, but misapplied some key information or concepts).
* 1: No demonstration of understanding.

I think this level of consistency is most important. However, we still have a long way to go to change the conversation from grades and GPAs to student learning and understanding. Most likely a series of 1, 2, 3, and 4s needs to be converted to the same letter grade at the end of the semester.

While I agree that a consistent grading scale is important and I believe that agreeing upon one is feasible, I don’t know what it should be. However, upon reflection, I’ve formed the following high-level ideas.

***If multiple things appear to be the same, there will be confusion if they aren’t.*** This applies in multiple ways. It applies to traditional grading scales that appear to be the same but aren’t. It applies to SBAR grading scales such as 1-4 that appear to be the same but map to different letter grades at the end of the semester. However, most importantly, if we select an SBAR grading scale such as 50-100 that appears to be the same as a traditional percentage grading scale, it will be problematic because students and parents will assume that the scales mean the same thing and, when they don’t, they will be confused and frustrated. Parents and students will understandably expect that a 70 means 70% of questions were answered correctly and not that “partial understanding is demonstrated (you are in the right ballpark, but misapplied some key information or concepts).”

***If you want to clearly communicate that something has changed and means something different, make it obvious by making its initial appearance very different.*** I think this is why explaining a system where understanding is scored with “mastery (M)” and “developing mastery (D)” indicators is easier to explain than a 1-4 grading scale that appears to be based on a percentage of 4 points or a typical GPA.

***We have to be proactive in our communication of change to teachers, students, and parents.*** The conversation about SBAR is significantly easier and much more likely to result in a positive outcome if the participants are starting from a position of curiosity. Even starting from a position of confusion or skepticism is better than starting from a position of hostility. The burden is upon the SBAR advocates to initiate these conversations proactively instead of reactively. The first time a student or parent hears about SBAR needs to be from a passionate educator who can clearly explain its purpose and goals.

***When you are evangelizing a significant change in an organization, frame the conversation in your terms.*** In my previous career, I spent a lot of time and effort evangelizing wide-spread change. I quickly learned that I had to set that stage for the discussion, not the detractors. This applies to education reform as much as software development methodologies. Advocates for standards-based assessment and reporting need to frame the conversation in terms of the primary focus of student learning and not a letter grade; opportunities to demonstrate understanding, not retakes; feedback, not scores; standards-based assessment and reporting (SBAR), not standards-based grading (SBG). ***Choice of language is critical in framing the conversation.***

I’m looking forward to your ideas and advice. I have to help our school figure this out before next year!

***Update (Sun Oct 17 21:00:40 CDT 2010):***

After reading Matt’s helpful comment, I realized that I didn’t present the steps that we have already taken throughout the school. During the last school year, we developed the following enduring understandings about SBAR:

1. Grades communicate student achievement of learning standards; students’ grades should not be reduced or inflated due to student behaviors outside of the standards.

2. Standards are clearly communicated to students with clear indicators of proficiency and exemplars.

3. Grading policies are consistent among teachers of a course and common assessments are utilized to measure student achievement.

4. Students learn at different rates and will have multiple opportunities to demonstrate their knowledge of standards; students are expected to take steps to correct errors of knowledge, understanding, or skills before they “reattempt” to demonstrate mastery of standards.

5. Formative assessments are used to provide timely and descriptive feedback in order to allow students to utilize feedback to self-assess progress towards a standard.

However, just because these have been defined, doesn’t mean that everybody is on board or that everybody interprets them the same way. Perhaps, as suggested in Matt’s comment below, we need to reach philosophical agreement first. Or, maybe we have to work on philosophical agreement and implementation details in tandem.

Three Realizations about SBAR (Start of Year 1 vs. Year 2)

Now six weeks into the school year, I’m reflecting on how standards-based assessment and reporting (SBAR) is impacting my students and colleagues this year compared to last. There are a number of significant changes. Last year, my colleague and I were two of only a handful of teachers who were implementing SBAR into their classes. Last year, I only integrated SBAR into my honors physics class and not my regular physics class. Last year, I used SnapGrades to report learning progress to students and parents. Last year, I jumped aboard the SBAR Express with both feet. Last year, I was a neophyte. ***Last year was the best year ever.***

The most important realization is that ***standards-based assessment and reporting is a philosophical change*** made by teachers, students, parents, and administrators. It is not simply a function mapping a traditional grading scale to another set of numbers and symbols. If any participant; teacher, student, parent, or administrator; fails to realize this, the benefits of SBAR will not be realized. Even worse, the SBAR movement will suffer as misguided or half-hearted efforts labeled “SBAR” fail to improve learning. If the teacher doesn’t make this philosophical jump, there is no hope that students or parents will. An administrator recently shared with me that the term Standards-Based Grading was a bit of a misnomer since grading is only a small part of what SBG encompasses. I shared the Standards-Based Assessment and Reporting term (which you’ll notice I’m using exclusively in this post) as a more apt alternative. Last year, my colleague and I did not set out to implement SBG or SBAR or any other acronym. Rather, we set out to change students’ perspectives on their learning and the role of grades in our class. SBAR was simply a tool that helped us achieve these goals. As more and more teachers and teams integrate SBAR practices into their classes, I’m very worried that they see SBAR as the end goal as opposed to the means to much more important ones.

The second key realization is that ***clearly presenting the rationale behind SBAR to my students is critical***. Last year, I made a very conscious and deliberative effort to explain SBAR, it purpose, and my rationale for integrating it into our class. My colleague and I received feedback that our students had a very clear understanding of SBAR in our class and our rationale for integrating it. I expect that I haven’t made enough of an effort this year to communicate the rationale. While I may be more familiar and comfortable with SBAR, many of my students are not. Until this year, I didn’t fully appreciate that the manner in which grades are reported to students and parents affects my ability to change students’ attitudes about learning and grades. Last year we reported learning progress with [SnapGrades](http://snapgrades.net/). The “report card” had no percentages and no letter grades. Just a list of standards and a note of which the student had demonstrated mastery:

Screen shot 2010-10-05 at 1.19.30 AM.png

This year, SnapGrades is not an option and we’re using our aging and soon-to-be-replaced online grade book. When students are parents look online, they don’t see any description of standards or clear indication of mastery. They see misleading percentages and letter grades:

Screen shot 2010-10-05 at 12.56.37 AM.png

How can students focus on developing their understanding when they are confronted with “0% (F)” and a “C” in bold, red type? This year, I’m fielding more questions from students and parents about improving their “grade” as opposed to their understanding. I have taken some steps to mitigate the negative impact of our online grade book and will be doing more shortly. More importantly, now that we’ve been together for six weeks, its time to discuss the rationale for SBAR again in each class.

The third realization is that ***taking small steps to integrate SBAR is actually harder and less effective than jumping aboard with both feet***. In my regular physics class, my team agreed to a more conservative approach. We are not measuring student understanding in terms of “mastery” and “developing mastery.” Instead we are using a 1-4 grading scale. The challenge with a 1-4 scale is that students and parents (and some teachers) see it as points or A, B, C, and D. I know that many students see a “2” and think, “that’s a C” rather than “there’s a major concept here that I don’t yet understand.” I’ve had multiple conversations with students who ask why if they only missed one part on an assessment they have a “2.” They are thinking in terms of percentage of questions answered correctly and not that they failed to demonstrate a major concept that is essential to understanding. In order to help students breakaway from their grade-centric mentality, I have to create as large as possible disconnect between symbols used to provide feedback and grades. Since I don’t see the 1-4 grading scale going away in the future (and actually fear it becoming required), I need to work extra hard in class to tie my feedback to their learning and not to their grade.

Despite the challenges that I’m facing, I want to be clear that I’m pleased and hopeful about where we’re heading this year. The best indication that I’m on the right track is that ***I can’t imagine going back to teaching my regular physics class like I did last year***.

This reflection has helped me realize how much work I have to do this year if I want it to be as successful as last year. If you are new to SBAR, hopefully my perspective of two years of introducing SBAR to my classes will help make your efforts more productive. If you have any suggestions, please do leave a comment!

Letting Students Teach

I’m really making an effort this year to have a much greater percentage of class time spent with students learning together in small groups as they solve physics problems rather than me solving problems on the board. I’ll still model how to solve certain types of problem to demonstrate problem solving best practices, but I’ve observed much more effective learning when students are working through problems with a small group of peers rather than copying what I’m writing. However, what I don’t want to happen is for one student in a group to understand how to solve the problem and simply tell everyone else in the group the solution such that they just copy what she writes.

I realized that this was an opportunity for some coaching. I requested that, while groups work on solutions to the problems, they refrain from simply telling each other the answers. Since we were working on drawing graphs of motion (position vs. time and velocity vs. time) from descriptions, I asked that the students confident of their answers instead describe the motion graphed by the other students. When the students hears the description of the motion that doesn’t match their intended descriptions, how to correct the graph may be clear. It wasn’t too much of a stretch to have students facilitate their group’s discussion in this manner since students are slowly becoming familiar with the socratic questioning during whiteboarding and are already used to the fact that I respond to almost every question with one or more questions of my own.

As I walked around the room, I witnessed a dozen teachers effectively giving individual attention and support to a dozen students.

No one asked me question.

Targets Calendars

One goal that my team has for this year is to help students become more responsible for managing their own learning. One way we do this is to encourage them to track the development of their understanding on targets calendars. Targets calendars (i.e., standards calendars) enumerate the targets (standards) for the current unit and associate targets with specific days, activities, and homework assignments. The targets calendars for my General Physics class and Enriched (Honors) Physics class are a bit different due to the different structure of each course.

In General Physics, there are weekly quizzes and each target is assessed for three consecutive weeks (the 1st, 2nd, 3rd columns). The best two of three scores (on a 1-4 scale) comprise the overall score (the Overall column).

In Enriched Physics, there is only one assessment for a target in class (the A1 column). We encourage students to perform their own self assessment in preparation for this assessment (the SA column). If a student doesn’t demonstrate mastery of the target, they have a second opportunity to do so outside of class (the A2 column). However, they are first encouraged to perform additional practice and seek assistance before this second attempt. Again, we encourage them to self assess before the second attempt (column A2P).

Our targets need refinement but we are improving them each year. Hopefully, if interested, you can adapt the structure to your classes. Leave a comment if you have links to your own organizers that help your students manage their learning.

generalTargetsCalendar.pdf

enrichedTargetsCalendar.pdf

General Physics Syllabus

I’ve been intending to share my syllabi for my classes and finally made the time to do so for my General (regular) Physics class:

syllabus.pdf

If you trying to implement standards-based grading (SBG) in your classroom, you may find the approach taken by my team interesting. The structure that we created is based on how my colleague and I organized our Enriched (honors) Physics class last year when we first implemented SBG.

When communicating our SBG methodology to students, parents, and other teachers; I’ve found the categorization of activities into the two buckets of learning activities and summative assessments very effective. It helps make very clear the difference between learning and demonstrating understanding.

One more note, the conversion of the 1-4 grading scale to percentages is only done to work with the severely limited grading software that we have to use. I’m looking forward to a new software system next year that can support SBG. Hopefully, it works as well as SnapGrades, which I used last year.

(If the idea of homework as a learning activity and summative assessment nauseates you, I [share your feeling](https://pedagoguepadawan.net/11/igradehomework/) and am trying to make it better.)